
19 The Coulomb Phase of SO(N)

19.1 Monodromies of the Coupling

At a generic point in the classical moduli space SO(N) with N − 2 flavors
is broken to SO(2) ∼ U(1). The effective holomorphic coupling

τ =
θYM

2π
+

4πi

g2
(19.1)

of the U(1) gauge theory transforms under electric-magnetic duality as:

S : τ → −1
τ

(19.2)

This is not a symmetry of the theory, it exchanges two equivalent descrip-
tions. Shifting θYM by 2π is a symmetry

T : τ → τ + 1 (19.3)

(S and T can be thought of as the generators of SL(2, Z).) For large z =
detM we know that

τ ≈ i

2π
ln
(

z

Λb

)
(19.4)

We see that τ has a singluarity in the complex variable z at z =∞. Consider
moving the VEVs around this point

Φj → e2πiΦj (19.5)

which yields

z → e2F2πiz = eb2πiz (19.6)

or

τ → τ − b (19.7)

Such a transformation when going around a complex singularity is called a
monodromy. Thus the monodromy at ∞ of τ is

M∞ = T−b (19.8)
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So we see that τ is not single-valued, even at weak coupling. However

4π

g2
= Imτ (19.9)

is invariant under M∞ (i.e. is single-valued) at weak coupling. If Imτ
was single-valued everywhere then it’s derivatives would be well defined and
(since τ is holomorphic) we have

(
d2

dx2
+

d2

dy2
)Imτ = 0 (19.10)

where z = x + iy. So Imτ is a harmonic function, which cannot be positive
definite, so g would be imaginary at somewhere in the moduli space. So we
conclude that Imτ is not single-valued everywhere.

This means there are two possibilities, the moduli space has some com-
plicated topology or there are singular points zi. Singular points have a
physical interpretation as particles becoming massless at that point. We
will see that this does happen in this theory. The singular points have mon-
odromies, at least two of which don’t commute withM∞, otherwise τ would
be single-valued.

19.2 Flowing from F = N − 1 to F = N − 2

The dual of SO(N) with N − 1 flavors is (for N > 3)

SO(3) SU(N − 1) U(1)R

q N−2
N−1

M 1 2
N−1

with

W =
Mji

2µ
φjφi − 1

64Λ2N−5
N,N−1

detM (19.11)

Integrate out one flavor by adding 1
2mMN−1,N−1 and The equations of mo-

tion give

φN−1φN−1 =
µdetM ′

32Λ2N−5
N,N−1

− µm (19.12)
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which (near detM ′ = 0) breaks SO(3) to U(1). There are corrections from
instantons, so the effective superpotential is:

Weff =
1
2µ

f

(
detM ′

Λ2N−4
N,N−2

)
M ′

ijφ
+iφ−j (19.13)

Note that large detM ′ is at strong coupling.
If r = rank(M ′), then there are F − r = N − 2− r massless flavors (q+

and q−) at detM ′ = 0. Consider φi
0 such that detM ′

0 = 0, and take

φi − φi
0 → e2πi(φi − φi

0) (19.14)

then

z = detM ′ → exp (2(F − r)2πi) z (19.15)

and

τ̃ = − i

2π
ln
(
detM ′)+ c (19.16)

so

τ̃ → τ̃ + F − r (19.17)

Defining the duality transformation D by

τ̃ = Dτ (19.18)

we have

M0 = D−1TF−rD (19.19)

Since we require

[M0,M∞] 6= 0 (19.20)

we must have

D ∝ S2n+1 (19.21)

So we see that φ± are monopoles and that τ̃ → 0 implies τ →∞.
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19.3 Diversion on N = 3

Recall the special case of SO(N) with N − 1 flavors, this was dual to SO(3)
with N − 1 flavors with a special superpotential:

W =
Mji

2µ
φjφi − 1

64Λ2N−5
N,N−1

detM (19.22)

By considering the dual of this dual we can see that this implies that N = 3
is a special case. To get the correct dual of the dual, the dual of SO(3) with
F flavors must have an extra term as well. That is the SO(F +1) dual must
have a superpotential

W̃ =
Mji

2µ
φjφi + εα det(φjφi) (19.23)

The value of α will be determined by demanding consistency. The factor ε
reflects the fact that SO(3) has a discrete axial Z4F symmetry

Q→ exp
(

2πi

4F

)
Q (19.24)

while SO(F + 1) only has a Z2F symmetry (for F > 2). Under the full Z4F

the det(φjφi) term changes sign, and

θYM → θYM + π (19.25)

Using (19.23) we find that the dual of the dual of SO(N) with N −1 flavors
has a superpotential

˜̃
W =

MN

2µ
+

N ij

2µ
djdi −

detM
64Λ2N−5

N,N−1

+ εαdet(djdi) (19.26)

With µ̃ = −µ, the N equation of motion sets Mji = djdi as we expect, and

for ε = 1, ˜̃W = 0 if

α =
1

64Λ2N−5
N,N−1

(19.27)

So the dual of the dual is the original theory for ε = 1.
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19.4 The Dyonic Dual

To determine what happens for VEVs of the order of the strong interaction
scale, we make use of the the second dual of SO(N) with N−1 flavors which
has ε = −1. For reasons that will become apparent, we will refer to this as
the dyonic dual, and the usual dual as the magnetic dual.

The dyonic dual is

SO(N) SU(F = N − 1) U(1)R

d 1
F

with

Wdyonic = − det(didj)
32Λ2N−5

N,N−1

(19.28)

Integrating out a flavor we have

Wdyonic = − det(didj)
32Λ2N−5

N,N−1

+
1
2
mdF dF (19.29)

where we use the notation

d = (di, dF ), i = 1, . . . , N − 2 (19.30)

The equation of motion for di gives didF = 0. For det(didj) 6= 0, SO(N) is
broken to U(1) and we have

Weff =
1
2
m

(
1− det(didj)

16Λ2N−5
N,N−1

)
d+

F d−F (19.31)

Near

det(didj) = 16Λ2N−5
N,N−1 (19.32)

d+
F and d−F are light. Since they are duals of monopoles with θYM → θYM+π,

they are dyons. The charges are such that

q±iQi ∼ d±F (19.33)

Taking m → 0, the dyon point moves towards the monopole point, when
m = 0 we know that the theory has an SO(3).
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So we have a web of three dualities that each describes a region of the
moduli space where different degrees of freedom become light. Integrating
out a flavor in the electric theory gives SO(N) with N − 3 flavors which has
two branches, one with a runaway vacuum and the other with a moduli space
exhibiting confinement. Adding the corresponding linear term in the mag-
netic dual gives a VEV to one flavor of monopoles throught the dual Meissner
effect this corresponds to confinement in the electric theory. The remain-
ing light monopoles can be identified with the hybrids hi = WαWαQN−4.
Adding a mass term 1

2m2dN−2dN−2 in the dyonic dual gives a VEV

〈d+
F d−F 〉 =

m216Λ2N−4
N,N−2

mdetM ′ (19.34)

which gives an effective superpotential

Weff =
m28Λ2N−4

N,N−2

detM ′ (19.35)

This theory displays essentially the same type of physics ans the N = 2
Seiberg-Witten models, and there are several consistency checks between
them.

19.5 Phases of Gauge Theories

A gauge invariant order parameter to distinguish between different phases
of a gauge theory is provided by the Wilson Loop:

W (C) = TrPei
∫

C
Aµdxµ

(19.36)

If C is a rectangle with sides T and R then for large T we can extract the
potential between two infinitely heavy charged sources:

〈W (C)〉 = e−TV (R) (19.37)

The various cases for the phases are

Coulomb (or fixed point) : V (R) ∼ 1
R

free electric : V (R) ∼ 1
R ln(RΛ)

free magnetic : V (R) ∼ ln(RΛ)
R

Higgs : V (R) ∼ const
confining : V (R) ∼ σR
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Replacing the electric charges in the loop with monopoles, we have an
‘t Hooft loop. Because of electric-magnetic duality, this interchanges free
electic and free magnetic and interchanges Higgs and confinement. We have
seen in some detail how this works in the Coulomb phase of SO(N), and it
is very suggestive of how N = 1 dualities work in general.
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